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SUMMARY

A rectangular conduit with a closed end has water flowing in/out at the other end. The water level at the
open end has an imposed sinusoidal movement. When this level is higher than the ceiling of the conduit,
a certain mass of air is trapped under the ceiling. In a previous article (T.D. Nguyen, La Houille Blanche,
No. 2, 1990), it was supposed that this air is flowing out freely through the ceiling, so the relative pressure
at the water surface is zero, and the water hammer at the dead end of the conduit was calculated when
the conduit was thoroughly filled. In this article, it is supposed that the trapped air is compressed
isothermally or adiabatically. The set of equations is resolved (water continuity and movement equations,
air state equation) by supposing a regime of flow at each section (section submerged or not), a certain
value for the air pressure and by using the sweep method to determine the water flow characteristics. The
air volume calculated by iteration must converge, and the calculated regimes at each section (submerged
or free) must agree with the supposed regimes. The simulation is performed first with a horizontal
conduit then with an inclined conduit. As expected, adiabatic compression gives higher pressure than
isothermal compression. The simulation shows also that when there is an air cushion, compared with the
case when air is flowing out freely, the shock of the water hammer at the closed end of the conduit is
significantly reduced. This method is aimed at calculating the flow with entrapped air in the inlet/outlet
tunnel of a hydroelectric plant, or in sewer system pipe when a sudden discharge surge (due to turbin
opening/closing or to urban storm) changes a previously free-surface flow in a mostly full-pipe flow, but
with some air entrapped under the ceiling. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In numerical methods to calculate the flow in hydroelectric tunnels or sewer pipes, when an
initial free-surface flow becomes a pressurized flow (or full-conduit flow), some authors have
used the Saint-Venant equations, with the assumption that acceleration is constant in pressur-
ized flow from upstream boundary to the surge front [1], to calculate water pressure, or with
the technique of the so-called ‘Preissmann slot’, developed by Cunge and Wegner [2]: when
pressurized flow occurs, the free-surface level rises in the slot to a certain level depending on
the supposed slot width (Figure 1), the pressure in the pressurized flow is given by the water
height in the slot. Since then, this technique is used in sewer systems [3,4], with some difficulties
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Figure 1. The Preissmann slot.

to determine the water height in the slot [5]. Obviously, this technique supposes that the air
over the fluid can flow freely out of the pipe, and there is no entrapped air under the ceiling.

In a previous article [6], the flow in a conduit closed at one end and with water entering at
the other end was simulated. At the open end, the water level has an imposed sinusoidal
movement (upstream boundary condition), while at the closed end, the downstream boundary
condition is Q=0. When the imposed level at entry section is higher than the ceiling, a certain
mass of air is trapped under the ceiling. Using water compressibility, water pressure is
calculated when it reaches the ceiling, and consequently, the technique of the Preissmann slot
is of no use in the current method. With the assumption that trapped air can flow out through
the ceiling (so that the relative pressure at the water surface is always zero), the water hammer
occurring when the conduit is thoroughly filled was calculated.

In this paper, it is supposed that the ceiling is impervious to air and that the air pocket is
progressively compressed when water enters the conduit.

2. HYPOTHESIS

The fluid is submitted to gravity and is compressible, the conduit is supposed rigid. Suppose
an elementary length of conduit bounded by a submerged section (SS) and a free section (FS)
(the surface line cuts the ceiling line at a point between SS and FS; Figure 2).

Figure 2. Scheme of an elementary length, with one free section and one submerged.
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Figure 3. Scheme of an elementary length, with two free sections.

(1) We suppose that the piezometric line is a continuous line through the ceiling, and that
the relative pressure of compressed air pa varies linearly from section 1 to section 2. At section
1 (SS), pa is zero. The continued water line intersects the piezometric line at Z1.

The piezometric height Z is defined by Z=z+p=z+pa+pc, z being the geometric height,
pc the relative pressure when the fluid is in contact with the ceiling (when the section is
submerged). When the fluid is not in contact with the ceiling (at a free section), pc is zero. The
pressures pa and pc are evaluated in height of water. In Figure 2, pc1"0 and pc2=0. On the
contrary, for pa from the compressed air, pa1=0 and pa2"0. To simplify the calculations,
suppose a linear variation of Z and air pressure pa in Dx. Strickly speaking, where the fluid
comes in contact with the ceiling (from section 1 to point wc), there is no more air and
consequently pa=0.

(2) When the two boundary sections are free (Figure 3), pa is constant in Dx (pa1=pa2). The
piezometric line and water line are parallel.

(3) The compression of the trapped air is sufficiently rapid, so there is no dissolving of air
in water (the mass of trapped air is constant).

3. CONSIDERED SET OF EQUATIONS

The system of equations is composed of two equations of continuity and movement for
compressible water when there is a linearly variable pressure at its surface, and one state
equation for air.

3.1. Equations of continuity and mo6ement for water

3.1.1. Equation of continuity. The liquid volume between sections 1 and 2 is (Figure 2):

Vl=
Dx
2
!

S1+S2−
dx1

Dx
(S1−AM1)−

dx2

Dx
(S2−AM2)

"
.

The air volume is:

Va=
Dx
2
!dx1

Dx
(S1−AM1)+

dx2

Dx
(S2−AM2)

"
.

Of course, we have:

Vl+Va=
Dx
2

(S1+S2)= inside volume of an elementary length of conduit.

The lengths dx1 and dx2 are defined by:
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dx1

Dx
=

(Z1−pa1)−Y1

Y2−Y1−{(Z2−pa2)− (Z1−pa1)}
,

dx2
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=1−
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.

The equation of continuity is written as:
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As the wetted area A is defined from the liquid volume Vl in an elementary length Dx by
A=Vl/Dx,
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and the specific mass variation is equal to:
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=

1
2

r060b
!((pc1+pa1)

(t
+
((pc2+pa2)
(t

"
.

The equivalent widths b1e and b2e, equal to the conduit widths at free sections, are given in
Appendix A.

3.1.2. Equation of mo6ement.

gA
(Z
(x
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+gASf

2

+
(Q
(t

+U
(Q
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−U
�(A
(t

+U
(A
(x

�
3

=0.

The first part is coming from the projected pressure force on the upper face, the pressure
forces on the upstream and downstream faces and from the projected weight, the second part
from the friction force and the third part from the inertial force (see Appendix B; Figure 4).
When there is no contact with the ceiling (pc=0) and the air pressure is zero (pa=0), you have
Z=z, and if the fluid is also incompressible ((r/(t=0), the two above equations are the
Saint-Venant equations.

3.2. State equation for air

For an isolated mass of air of volume Va, subject to absolute pressure Pa, the relation:
PaVa

g =Cste.
With differential form, and with Pa=pa+10, the absolute and relative pressures Pa and pa

are both evaluated in water height:

Figure 4. Forces on an elementary water body, with variable pressure on the water surface.
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dpa

dt
+

Pag

Va

×
dVa

dt
=0.

For an elementary length Dx, dVa= −dVl= −Dx · dA. So, if air mass occupies the upper
part of N elementary lengths limited by sections i and i+1, the variation of air volume is given
by:

dVa

dt
=

1
2

%
N
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From which we have the differential form of state equation of the trapped air:
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4. METHOD OF RESOLUTION

Suppose a known state of flow at time t : at each section, the regime (submerged or free) is
known, as is the piezometric height Z, the discharge Q and the air pressure pa, and these
variables must be determined at time t= t+Dt. Except for the first section in the application
below, a boundary section, and where the regime is determined by boundary level condition,
we suppose first that the regime at each section is the same as at time t. By a double sweep
method and using boundary conditions, DZ and DQ are determined with the two continuity
and movement equations for water. For each reach Dx and each time increment Dt, the two
equations are discretized by finite difference method, with the implicit Preismann scheme [6].
The space weighting coefficient is equal to 0.5 and the time weighting coefficient is taken equal
to 0.87. Then the calculated DZ are used in the state equation for air to determine Dpa,
consequently, a new value for pa to be injected in the two equations for water is obtained.
Proceeding by iterations, a set of values for DZ, DQ and Dpa is obtained, satisfying the three
differential equations. At each iteration, that the regime (submerged or not) at each section
remains the same must be verified, i.e. a submerged/free section remains submerged/free.
Otherwise, if a free section becomes submerged, or vice versa, we must introduce in these
equations the known quantities Dzi, Dpai or Dpci For example, a previously free section i
becomes submerged: we write that the water is in contact with the ceiling (Dzi=Yi−z i

n) and
the air pressure becomes zero (Dpai=0−pai

n ); we must now calculate Dpci=p ci
n+ l−0 and

verify that the water is compressed by the ceiling with Dpci\0. In the inverse way, when a
previously submerged section i becomes free, it is known that the variation of pressure due to
ceiling Dpci=0−p ci

n . The air pressure on the newly free section is equal to the pocket air
pressure (equal air pressure on free sections is admitted, see Figure 3), so Dpai=pa

n+1−0.
Now, calculate Dzi=z i

n+1−Yi and the new air pressure pa
n+1 by iterations and verify that the

free-surface is under the ceiling, i.e. DziB0.

5. APPLICATION

A rectangular conduit of section 76.2 m×61000 m, of length 305000 m, with a closed end and
with water flowing in/out at the other end is studied. The length and width of the conduit are
those of a parallepipedic estuary in which Wen Hsiung Li [7] had treated the movement of a
body of water bounded laterally and at one end by walls and submitted to periodical surface
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Figure 5. Isothermal compression. Piezometric, water, D elevation lines and velocity field.

tide movement at the other end (the tide has an amplitude of 4.42 m and a period of T=12.4
h). In the present model, a ceiling has been put at the tide mean level, so when the level at the
entry end is higher than the ceiling, a certain mass of air is trapped under the ceiling. The
conduit is divided in 16 equal reaches by 17 transsects. First it is placed horizontally
(da/dx=0), then slightly upwards at the closed end (da/dx=10−5). Previously, flow in the
model was verified when all sections are free (when the water surface is under the ceiling) with
the analytical formulaes given by Wen Hsiung Li [7]. Then when the boundary level at the
entry section is higher than the ceiling, it was supposed that the trapped air can flow freely out
through the ceiling (so pa=0), the water hammer occurring when the conduit is entirely filled
was calculated [6]. In the present paper, it is supposed that the ceiling is impervious to air and
that the trapped air is compressed isothermally (g=1), or adiabatically (g=1.4) and that the
air pressure is the same at free sections ((pa/(x=0).

When the conduit is horizontal (Figure 5), the piezometric line and water line occur when
incoming velocities near the closed end are at their maximum, in case of isothermal compres-
sion. Figures 6 and 7 show piezometric and water lines at the moment of minimum air volume
(Figure 6 for isothermal compression and Figure 7 for adiabatic compression). It is noticed
that for isothermal compression (Figure 6), three sections at the dead end are submerged at
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this instant. Figure 8 presents the variation with time of air pressure and air volume. Notice
that for a same trapped air mass, adiabatic compression gives higher pressure and conse-
quently higher volume than isothermal compression. Figures 9 and 10 present variations of
water velocity with time for some sections near the dead end (Figure 9 for isothermal
compression and Figure 10 for adiabatic compression). In isothermal compression (Figure 9),
the sudden surge of velocity at time about 300 min is due to sudden change in water surface
slope, when previously free sections near the dead end become submerged (see Figure 6:
instead of the supposed straight line between FS and SS, a more natural curved link between
FS and SS—represented by dashed line in Figure 6—will diminish the volume offered to
water and consequently will dampen this velocity surge). This phenomenon does not appear in
adiabatic compression, where near dead end sections remain free during compression.

Having no possibility of comparing the present results with analogous works, an ‘internal’
verification is performed as follows: from the abo6e calculated 6elocity field U(x, t), we use the
generalized Bernoulli equation inferred from the movement equation:

D(x, t)=Z(x, t)+
1

2g
[U(x, t)]2+

1
g
& x

0

(U
(t

dx=Z(0, t)+
1
2g

[U(0, t)]2−
& x

0

Sf dx,

Figure 6. Isothermal compression. Piezometric, water, D elevation lines at minimum air volume.
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Figure 7. Adiabatic compression. Piezometric, water, D elevation lines at minimum air volume.

to recalculate Z from this integral equation. The Z determined with the present method and
that calculated from the Bernoulli equation are almost the same. For example, in the case of
isothermal compression (Figure 6), in the following table some numerical values at different
sections are given:

1 (Boundary) 5Section 10 15 17

Z (m) this paper 80.200 80.818 83.376 86.813 85.580
80.200 80.657 83.118 85.024Z (m) Bernoulli 85.625

It is also remarked that the D elevation defined above has an usual falling slope Sf in
direction of flow. This elevation is also given in figures, along with piezometric and water lines.
When the air volume is at its minimum (Figures 6, 7 and 11), this line is quasi-horizontal, due
to small velocity and small value for Sf. In Figure 6, the error of small uprise of the D
elevation line at section 15 is the consequence of error of surge of velocity (Figure 9), as the
link between FS and SS must be modelized by a straight line.
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In the following table, at the closed end section (section 17), maximum values of pc (when
section is submeged) or pa (when it is free) are given, in case of air flowing out freely (no air
pocket) and in case of air compressed isothermally or adiabatically (with air pocket). When
there is an air cushion there is no more surge in pressure at this wall (no water hammer effect),
and the pressure at this end is reduced significantly.

Free sectionSubmerged sectionSubmerged sectionClosed end section
(air compressedregime at maximum (air flowing out (air compressed

adiabatically)pressure isothermally)freely)

10.110.4Pressure in metres of 48
water

When the conduit is inclined, for isothermal compression, Figure 11 shows the piezometric,
water and D elevation lines at the moment of minimum air volume. Notice that compared with
compression in horizontal conduit, more sections at the entry end become submerged (two

Figure 8. Variation with time of air pressure and volume.
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Figure 9. Isothermal compression. Variation of velocities with time.

sections submerged instead of 1 submerged section with horizontal conduit) and there are no
more submerged sections at dead end.

6. CONCLUSION

In this article, the problem of water flow inside a closed conduit, in the presence of a trapped
air cushion, is treated by numerical simulation. This kind of flow may occur in sewer pipes or
hydroelectric tunnels. The considered application deals with a conduit of very large dimen-
sions, in fact the dimensions of an estuary, for the sake of comparison, when flow is a
free-surface flow, between this paper’s results and Wen Hsiung Li analytical results [7]. But one
of the advantages of numerical methods is to change easily geometric and dynamic input: so
in case of no air pocket, the transition from free-surface flow to pressurized flow in an
hydroelectric pressure pipe had already been simulated (steel pipe of diameter 1500 mm, of
thickness 55 mm), with simulation of the water hammer intensity, when the gate at the end of
the pipe is progressively shut (see [6]). In the current simulation, when an air pocket is present,
the next stage of study is to find a concrete case of application, with measures of air pressure
and water flow characteristics, for comparison between numerical simulation results and
experimental or on site measures.
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Figure 10. Adiabatic compression. Variation of velocities with time.

APPENDIX A

The equivalent widths b1e and b2e are given by:
(a) When the water line cuts the ceiling line in the elementary length Dx (Figure 2),

b1e=b1 ·
dx1

Dx
−

S1−AM1− (S2−AM2)
Y2−Y1− (Z2−pa2− (Z1−pa1))

·
dx2

Dx
,

b2e=b2 ·
dx2

Dx
−

S1−AM1− (S2−AM2)
Y2−Y1− (Z2−pa2− (Z1−pa1))

·
dx2

Dx
.

In the case of Figure 2, where section 1 is submerged, pa1=0.
(b) When the water line is entirely under the ceiling line (Figure 3),

b1e=b1,

b2e=b2.

(c) When the water line coincides with the ceiling line, and as the conduit is supposed rigid,

b1e=0, b2e=0.
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Figure 11. Inclined conduit. Isothermal compression. Piezometric, water lines at minimum air volume.

APPENDIX B

(See Figure 4.)
For a Dx length of a water body in a rectangular channel of unit width, submitted to weight

P, bottom friction force and pressure forces F1 and F2 on upstream and downstream sections
and Fs on the water surface, let:

Z1=a1+h1+p1; Z2=a2+h2+p2.

We have:

F1

60

=p1h1+
h1

2

2
=

1
2

(h1+p1)2−
p1

2

2
=

1
2

(Z1−a1)2−
p1

2

2
,

F2

60

=
1
2

(Z2−a2)2−
p2

2

2
,

F s

60

=
p1+p2

2
·Dx.
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Now:

F1−F2

60

=
1
2

[(Z1−a1)2− (Z2−a2)2]+
1
2

(p2
2−p1

2)

=
�

−
(Z
(x
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(a
(x

Dx
�

(Zm−am)+
(p
(x

Dx�pm.

But:

(a
(x

Dx(Zm−am)=
(a
(x
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(a
(x

Dx(hm+pm)$−
P
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sin a+pm

(a
(x

Dx.

So:

P sin a+F1−F2

60

= −Dx(Zm−am)
(Z
(x

+Dx · pm
�(p
(x

+
(a
(x
�

.

The projection of Fs on the bottom line is equal to:

Fs

60

·sin(f)=pm · Dx ·
(h
(x

.

Finally,

P sin a+F1−F2+Fs sin f

60

= −Dx · hm ·
(Z
(x

and for a channel of mean width bm

P sin a+F1−F2+Fs sin f= −60 · Dx · bm · hm ·
(Z
(x

= −60 · Dx · Am ·
(Z
(x

.

Part 2: the friction force is equal to: −Sf60AmDx.
Part 3: the inertial force is equal to −rAmDx�G, with acceleration G equal to:

G=
1
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!(Qm

(t
+Um

(Qm

(x
−Um

�(Am

(t
+Um

(Am

(x
�"

.

APPENDIX C. NOMENCLATURE

a bottom elevation (m)
wetted area defined from the liquid volume Vl by A=Vl/Dx (m2)A
wetted area at a conduit section (m2)AM
mean wetted area for two consecutive transsects (m2) (Am=0.5×(AM1+AM2))Am:

b width at the free surface (m)
b1e, b2e equivalent widths, given in Appendix A (m)

elevation, defined as D(x, t)=Z(x, t)+1/2g [U(x, t)]2+1/g 	0
x (U/(t dx (m)D

gravity acceleration (m s−2)g
Strickler coefficient (m1/3 s−1)K

p pressure on water surface, evaluated in water height (m); p=pa at a free section
and p=pc at a submerged section

Pa absolute pressure of trapped air (m)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 485–498 (1999)



T.D. NGUYEN498

discharge (m3 s−1)Q
area of a section of the conduit (m2)S
friction slope (Sf=Qm�Qm�/K2Am

2 (Rhm)4/3)Sf

time (s)t
oscillating level period at the open end of the example conduit (T=12.4×3600 s)T

U velocity (m s−1) (U=Q/AM)
liquid volume in an elementary length (m3)Vl

air volume in an elementary length (m3)Va

longitudinal abscissa, directed positively from open end to closed end of conduitx
(m)

Y ceiling elevation (m)
water surface elevation (m)z

Z piezometric elevation, defined as Z=z+p=z+pa+pc (m)
a bottom slope

water compressibility ratio (b=5×10−10 m2 N−1)b

constant in air state equationg

angle between water line and bottom linef

water specific mass at p=0 (kg m−3)r0

water specific weight at p=0 (9810 N m−3)60

water acceleration (m s−2)G
Dfi= f i

n+1−f i
n

Suffix m marks the mean value for two consecutive transsects (e.g. bm=0.5× (b1+b2))
Suffix 1, 2 mark the serial number of transsects (e.g. F1: pressure force on transsect 1)
Power index n marks time step (t=nDt)
FS, free section; SS, submerged section.
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